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To Leonhard Euler, on the occasion of his 300th birthday.

Having lived, they live forever,
Who to purpose grand endeavor.
And nor shall time, nor tongue of man,
E’er taint or burnish that rare clan;
For none may mark them with their sign,
Who chose to breathe the breath divine.
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Abstract

A generalization of Euler’s formula eix = cos(x)+ i sin(x) for fractional powers
of i is discussed. This generalization, based on the term

exi
(22−m)

corresponds to a sequence of spirals in the complex plane. Just as eix gener-

ates cos(x) and sin(x), exi(22−m)
generates sets of functions (“levels”) which

generalize the properties of cos(x) and sin(x) by combining periodic and expo-

nential characteristics. The set of all functions generated by exi(22−m)
defines

an orthogonal basis for the set of all Taylor polynomials.



Chapter 1

Introduction

Asclepius, in days when we are young,
The Music of the Spheres we first hear sung!
Through straining then, to listen and to learn,
What revelries of truth one may discern!

According to Richard Feynman, Euler’s formula1

eix = cos(x) + i sin(x) (1.1)

is the most remarkable in mathematics.
Certainly, it is one of the most important, relating the exponential constant

e, which describes growth, to the cos(x) and sin(x) functions, which describe
periodic behavior, through the constant i, which describes rotations.

It is odd, given the importance of the equation, that there does not appear to
exist a systematic discussion of the implications of raising i in Euler’s formula to
fractional powers. As will be shown here, there is a natural extension of Euler’s
formula for fractional powers of i that provides coherent and interesting results.

Implications include

1. While Euler’s formula corresponds to a circle in the complex plane, frac-
tional powers of i correspond to spirals.

2. By varying a single parameter, it is possible to generate ex, e−x, cos(x),
sin(x), and an infinite family of related functions.

3. Just as eix generates cos(x) and sin(x), each fractional power of i consid-
ered here generates its own set of functions (a “level”). The levels have
related but distinct properties.

4. The set of functions at each level form a differential cycle. That is, every
function in the cycle is the derivative of the next higher function in the
cycle, with the highest function being the negative derivative of the lowest.

1http://en.wikipedia.org/wiki/Euler%27s formula
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5. Each generated function can be represented in terms of a combination of
hyperbolic and circular components. More precisely, every such function
is either ex, e−x, cos(x), sin(x), or a sum of products of either cosh(x) or
sinh(x) with either cos(x) or sin(x).

6. The set of functions generated at all levels defines an orthogonal basis for
the Taylor polynomials.

7. A geometric curvature can be associated with Taylor polynomials.

8. In certain cases, the roots of nth–degree polynomials can be found very
simply.

I have attempted to make this monograph accessible to as wide an audience
as possible: mathematics should not be left solely to specialists. References to
background topics are collected online at http://del.icio.us/jprothero/Euler

See also jerroldprothero.blogspot.com
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Chapter 2

The Magic Suitcase

Of all fractions, perhaps the simplest are those which are powers of two (1
2 ,

1
4 ,

1
8 ,

etc.). Consequently, in considering possible generalizations of Euler’s term eix

to fractional powers of i we are led naturally to the term

exi
(22−m)

(2.1)

Where m is an integer. I call this the “magic suitcase”, because however much
one unpacks from this term, there is always more to be found.

While perhaps initially mysterious, the suitcase simply takes advantage of
the useful properties of powers of two, which interact very naturally with i. Each
value of m corresponds to a particular level, whose characteristics are outlined
below.

• For m = 0 (and, similarly, for any negative value of m) the i exponent
reduces to

i(2
2−0) = i(2

2) = i4 = 1

so the suitcase is equal to the familiar natural exponential, ex.

• For m = 1, the suitcase reduces to

exi
(22−1)

= exi
(21)

= exi
2

= e−x

• For m = 2, we have

exi
(22−2)

= exi
(20)

= exi
1

= eix
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This gives us the traditional Euler term, corresponding to a circle in the
complex plane.

• For m = 3, we have

exi
(22−3)

= exi
(2−1)

= exi
1/2

which (as we will see) corresponds to a spiral in the complex plane.

• For m = 4, we have exi1/4
, corresponding to a (different) spiral in the

complex plane.

• And so on. As m becomes very large, we have

lim
m→∞

i(2
2−m) = i0 = 1

so

lim
m→∞

exi(22−m)
= ex

The suitcase term both “starts” (m = 0) and “ends” (m→∞) with ex. We
will soon see a geometric interpretation of why this is true.

The line of thought discussed here was originally inspired by the term

eθi
(2m−1)/2m−1

(2.2)

provided by John Cairns in U.S. Patent 5,563,556, Geometrically Modulated
Waves.1 Aside from a certain ungainliness, the Cairns term has technical limi-
tations and the patent itself contains several algebraic errors.

Nonetheless, so far as I know (and, apparently, so far as the Patent Office
knew), Cairns was the first to examine the consequences of fractional powers
of i in Euler’s formula. Consequently, it is appropriate to refer to the set of
functions described below as “Cairns space”.

1http://www.google.com/patents?vid=USPAT5563556
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Chapter 3

The Geometric
Interpretation

A well-known consequence of Euler’s formula is that eiπ/2 = i.1 Therefore

i(2
2−m) = (eiπ/2)(22−m) (3.1)

By replacing i(2
2−m) with (eiπ/2)(2

2−m) in the suitcase, we can express it
equivalently as

exi
(22−m)

= ex(e
iπ/2)(22−m)

(3.2)

= exe
(iπ/2)(22−m)

(3.3)

= exe
iπ(21−m)

(3.4)

We can now invoke Euler’s formula to break apart the upper exponent:

eiπ(21−m) = cos(π21−m) + i sin(π21−m) (3.5)

By plugging Equation (3.5) in for the exponent of Equation (3.4), we get

1This follows from inserting π/2 into Euler’s formula: cos(π/2) = 0 and sin(π/2) = 1, so
eiπ/2 = cos(π/2) + i sin(π/2) = i.
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exe
iπ(21−m)

= ex(cos(π21−m)+i sin(π21−m)) (3.6)

= ex cos(π21−m)eix sin(π21−m) (3.7)

and therefore

exi
(22−m)

= ex cos(π21−m)eix sin(π21−m) (3.8)

The first factor of Equation (3.8), ex cos(π21−m), is a pure real-valued expo-
nential. The second factor, eix sin(π21−m), defines a circle in the complex plane
with period 2π/ sin(π21−m). Multiplying these two factors together, we have a
“growing circle”: that is, a spiral.

As m increases, we have

lim
m→∞

cos(π21−m) = 1 (3.9)

lim
m→∞

sin(π21−m) = 0 (3.10)

Consequently, with increasing m the exponential term grows faster, and the
spiral rotation “slows down” (period increases).

Regardless of the value of m, for x = 0 we have exi(22−m)
= e0 = 1. There-

fore, every spiral “starts” on the real axis of the complex plane, at the point
(1, 0). As m increases, the period also increases: in the limit of large m, the
spiral “slows down” its rotation to the degree that it never gets off the real axis.

This is the geometric interpretation of the fact that exi(22−m)
converges back to

ex as m→∞.
For clarity, let us look at Equation (3.8) for particular values of m.

• For m = 0 (and similarly for any negative value of m) cos(π21−m) = 1

and sin(π21−m) = 0, so

ex cos(π21−m)eix sin(π21−m) = ex

• For m = 1, cos(π21−m) = −1 and sin(π21−m) = 0, so

ex cos(π21−m)eix sin(π21−m) = e−x
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• For m = 2, cos(π21−m) = 0 and sin(π21−m) = 1, so

ex cos(π21−m)eix sin(π21−m) = eix

• For large m, lim
m→∞

cos(π21−m) = 1 and lim
m→∞

sin(π21−m) = 0, so

ex cos(π21−m)eix sin(π21−m) = ex

These results are of course consistent with those found in Chapter 1.
Incidentally, by invoking the Euler formula and its equivalent for hyperbolic

trigonometry

ex = cosh(x) + sinh(x) (3.11)

we can decompose Equation (3.8) into

exi(22−m)
= (cosh(cos(π21−m)x) + sinh(cos(π21−m)x)) · (3.12)

(cos(sin(π21−m)x) + i sin(sin(π21−m)x))

As we shall see, this balanced treatment of hyperbolic and circular functions
is intrinsic to Cairns space.
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Chapter 4

The Taylor Series
Interpretation

It is well-known that Euler’s formula can be derived by expanding eix as a
Taylor series and grouping terms. One gets

eix =
∞∑
t=0

(ix)t

t!
(4.1)

= 1 + (ix) +
(ix)2

2!
+

(ix)3

3!
+ . . . (4.2)

= 1 + ix− x2

2!
− ix3

3!
+ . . . (4.3)

= (1− x2

2!
+ . . .) + i(x− x3

3!
+ . . .) (4.4)

=
∞∑
t=0

x2t

(2t)!
+ i

∞∑
t=0

x2t+1

(2t+ 1)!
(4.5)

= cos(x) + i sin(x) (4.6)

Precisely the same procedure can be followed to generate functions for any
m-value of the suitcase. For m = 3, we have
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exi
1/2

=
∞∑
t=0

(xi1/2)t

t!
(4.7)

= 1 + (xi1/2) +
(xi1/2)2

2!
+

(xi1/2)3

3!
+ (4.8)

(xi1/2)4

4!
+

(xi1/2)5

5!
+

(xi1/2)6

6!
+

(xi1/2)7

7!
+ . . . (4.9)

= 1 + i1/2x+ i1
x2

2!
+ i3/2

x3

3!
+ (4.10)

− x4

4!
− i1/2

x5

5!
− i1

x6

6!
− i3/2

x7

7!
+ . . . (4.11)

= (1 +−x
4

4!
+ . . .) + i1/2(x− x5

5!
+ . . .) + (4.12)

i(
x2

2!
− x6

6!
+ . . .) + i3/2(

x3

3!
− x7

7!
+ . . .) (4.13)

= ψ3,0(x) + i1/2ψ3,1(x) + iψ3,2(x) + i3/2ψ3,3(x) (4.14)

Where

ψ3,0(x) ≡
∞∑

t=0

x4t

(4t)!
(4.15)

ψ3,1(x) ≡
∞∑

t=0

x4t+1

(4t+ 1)!
(4.16)

ψ3,2(x) ≡
∞∑

t=0

x4t+2

(4t+ 2)!
(4.17)

ψ3,3(x) ≡
∞∑

t=0

x4t+3

(4t+ 3)!
(4.18)

(4.19)

The general relationship for any m is1

exi
(22−m)

=

d2m−1e−1∑
n=0

in22−m

ψmn(x) (4.20)

1The proof of this equation is simply a generalization of the above m = 3 discussion: see
Appendix A.
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where

ψmn(x) =
∞∑
t=0

(−1)td2
1−me xtd2

m−1e+n

(td2m−1e+ n)!
(4.21)

The ceiling functions are there to handle boundary cases correctly. The
ceiling function prevents 2m−1 from taking on a fractional value for m ≤ 0. In
Equation (4.21) the factor d21−me “turns off” the sign alternation of terms for
m ≤ 0, corresponding the function ex.

Here are some interesting points about Equations (4.20) and (4.21).

• The value of m determines a “level” of Cairns space, defining a set of
functions.

– m < 0 corresponds to the single function ψ0,0(x) = ex

– m = 1 corresponds to the single function ψ1,0(x) = e−x

– m = 2 corresponds to the two functions ψ2,0(x) = cos(x) and ψ2,1(x) =
sin(x)

– m = 3 corresponds to the four functions ψ3,0(x), ψ3,1(x), ψ3,2(x),
and ψ3,3(x), as defined above

– m = 4 corresponds to eight functions

– In general, for any m there are d2m−1e functions.

• The value of n determines a particular function at level m. The possible
values of n run from 0 to d2m−1e − 1.

• At level m, the Taylor series corresponding to ψmn(x) consist of terms
with powers differing by d2m−1e and offset by n.

• If n is even, all terms in ψmn(x) have even power; if n is odd, all terms in
ψmn(x) have odd power. Consequently, ψmn(x) is symmetric for even n
and anti-symmetric for odd n.2

• For m > 1, we see by inspection that the functions in level m form a
differential cycle. That is, for n > 0 ψ′m,n(x) = ψm,n−1(x) and for n = 0
we have ψ′m,0(x) = −ψm,d2m−1e−1(x)

2That is, for even n ψmn(−x) = ψmn(x) and for odd n ψmn(−x) = −ψmn(x). This
property is familiar from the well-known behavior of ψ2,0(x) = cos(x) and ψ2,1(x) = sin(x).
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Chapter 5

The Algebraic
Interpretation

In Chapter 4, we saw how to express the functions generated by exi(22−m)
as

Taylor series. Is it also possible to describe these same functions in terms of
familiar algebraic expressions? In this chapter, we shall see that it is.

From Chapter 4 we know that

ψ0,0(x) = ex = exi
4

(5.1)

ψ1,0(x) = e−x = exi
2

(5.2)

ψ2,0(x) = cos(x) =
1

2

(
eix + e−ix

)
=

1

2

(
exi

1

+ exi
3
)

(5.3)

Note that

22−m =

 4 if m = 0;
2 if m = 1;
1 if m = 2.

(5.4)

So the above equations all have exi(22−m)
as the first term. Notice also that the

above three equations can be described by the rules

• Start with the term exi(22−m)
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• If
(
2m−2

)
(1 + 2) < 4, add the term exi

(2m−2)(1+2)

• Divide by the number of terms

This might lead one to guess1 that

ψ3,0(x)
?
=

1

4

(
exi

1/2

+ exi
3/2

+ exi
5/2

+ exi
7/2

)
(5.5)

ψ4,0(x)
?
=

1

8
( exi

1/4
+ exi

3/4

+ exi
5/4

+ exi
7/4

+ (5.6)

exi
9/4

+ exi
11/4

+ exi
13/4

+ exi
15/4

) (5.7)

and that in general2

ψm,0(x)
?
=

1

d2m−1e

d2m−1e−1∑
p=0

exi
(2p+1)22−m

(5.8)

To prove Equation (5.8), it is useful to define a function Em,0(x) with the
above property. By definition

Em,0(x) ≡
1

d2m−1e

d2m−1e−1∑
p=0

exi
(2p+1)22−m

(5.9)

If we assume Em,0(x) = ψm,0(x), it follows that the derivative and integrals
of Em,0(x) must be equal to the derivatives and integrals of ψm,0(x). By in-
spection, taking the integrals of Equation (5.9) with integration constant zero,
we define

1“hypothesize”
2There is a tension between simple exposition, on the one hand, and a certain realism

about how results are actually found on the other. In practice, I found the m = 3 relationship
by means less than pretty, not suitable for a family monograph, then guessed the general
relationship.
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Emn(x) ≡
1

d2m−1e

d2m−1e−1∑
p=0

i−n(2p+1)22−m

exi
(2p+1)22−m

(5.10)

With the above definition of Emn(x), we can then prove that for all m,

ψmn(x) = Emn(x) (5.11)

as is shown in Appendix B.3

The equivalence of ψmn(x) and Emn(x) is quite interesting, as it relates
an infinite set of Taylor series to a corresponding infinite set of exponential
functions. One has two different ways of looking at the component functions of

exi(22−m)
.

Because Emn(x) = ψmn(x), by comparison with Equation (4.20) we must
have

exi
(22−m)

=

d2m−1e−1∑
n=0

in22−m

Emn(x) (5.12)

Since ψmn(x) is always a real-valued function, it follows that Emn(x) must
also be always real-valued. This is rather surprising, given that for n 6= 0 the
terms of Emn(x) have imaginary coefficients. With each successive differen-
tiation of Emn(x) a shower of imaginary factors descend from the exponents
to become coefficients; and yet the imaginary part of Emn(x) always exactly
cancels out to produce a purely real result. It is a most delicate dance.

Let us examine Emn(x) in more detail. For m = 3, we have

E3,0(x) =
1

4

(
exi

1/2

+ exi
3/2

+ exi
5/2

+ exi
7/2

)
(5.13)

We can use the method of Chapter 3 to write
3Essentially, the proof amounts to expanding Em,0 as a sum of Taylor series, then recur-

sively cancelling terms until one is left with ψm,0. The equivalence for all n follows from
parallel differentiation.
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i1/2 =
(
eiπ/2

)1/2
(5.14)

= eiπ/4 (5.15)

= cos(
π

4
) + i sin(

π

4
) (5.16)

=
1√
2

+ i
1√
2

(5.17)

i3/2 =
(
eiπ/2

)3/2
(5.18)

= ei3π/4 (5.19)

= cos(
3π

4
) + i sin(

3π

4
) (5.20)

= − 1√
2

+ i
1√
2

(5.21)

i5/2 =
(
eiπ/2

)5/2
(5.22)

= ei5π/4 (5.23)

= cos(
5π

4
) + i sin(

5π

4
) (5.24)

= − 1√
2
− i

1√
2

(5.25)

i7/2 =
(
eiπ/2

)7/2
(5.26)

= ei7π/4 (5.27)

= cos(
7π

4
) + i sin(

7π

4
) (5.28)

=
1√
2
− i

1√
2

(5.29)

And hence
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E3,0(x) =
1

4
(ex/

√
2exi/

√
2 + e−x/

√
2exi/

√
2 + (5.30)

e−x/
√

2e−xi/
√

2 + ex/
√

2e−xi/
√

2)

We can now factor Equation (5.30) by combining like factors to obtain

E3,0(x) = 1
4
( ex/

√
2(exi/

√
2 + e−xi/

√
2) + (5.31)

e−x/
√

2(exi/
√

2 + e−xi/
√

2))

E3,0(x) =
1

4
((ex/

√
2 + e−x/

√
2)(exi/

√
2 + e−xi/

√
2)) (5.32)

E3,0(x) = cosh(
x√
2
) cos(

x√
2
) (5.33)

Following the differentiation rule for ψmn(x) given in Chapter 4, we obtain

E3,0(x) = cosh(
x√
2
) cos(

x√
2
) (5.34)

E3,1(x) =
1√
2
(cosh(

x√
2
) sin(

x√
2
) + sinh(

x√
2
) cos(

x√
2
)) (5.35)

E3,2(x) = sinh(
x√
2
) sin(

x√
2
) (5.36)

E3,3(x) =
1√
2
(cosh(

x√
2
) sin(

x√
2
)− sinh(

x√
2
) cos(

x√
2
)) (5.37)

(5.38)

As shown in Appendix C, for m ≥ 2 the general rule is

Em,0(x) =
1

d2m−3e

d2m−3e−1∑
p=0

cosh(cpx) cos(spx) (5.39)

Where we have used the short-hands
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cp ≡ cos(π(2p+ 1)21−m) (5.40)
sp ≡ sin(π(2p+ 1)21−m) (5.41)

From Em,0(x), we can obtain Emn(x) for all n by repeated differentiation
or integration. Alternatively, one can find Emn(x) from the following equation
(see Appendix C)

Emn(x) =
1

d2m−1e

d2m−1e−1∑
p=0

i−n(2p+1)2m−2
· (5.42)

(cosh(cpx) cos(spx) + sinh(cpx) cos(spx) +
i cosh(cpx) sin(spx) + i sinh(cpx) sin(spx))

For concreteness, the algebraic view of the Cairns functions for m ≤ 4 are
given in Appendix G.

Recall from Chapter 4 that ψmn(x) is symmetric if n is even, and anti-
symmetric if n is odd. The same rule must hold for Emn(x), since Emn(x) =
ψmn(x). From the Emn(x) perspective, the symmetry rules hold because cosh(x)
and cos(x) are symmetric functions, and sinh(x) and sin(x) are antisymmetric.
The product of two symmetric functions or two anti-symmetric functions is
symmetric, and the product of a symmetric with an anti-symmetric function is
anti-symmetric. For even n, Emn(x) is a sum of products of the (symmetric)
cosh(x) cos(x) and sinh(x) sin(x); for odd n, Emn(x) is a sum of products of the
(anti-symmetric) cosh(x) sin(x) and sinh(x) cos(x).
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Chapter 6

Projection Onto Cairns
Space

The simplest of all infinite Taylor series is

ex =
∞∑

t=0

xt

t!
= 1 + x+

x2

2!
+
x3

3!
+ ... (6.1)

By inspection of Equation (4.21), we see that every ψmn(x) can be derived
from the Taylor series for ex by taking the terms of ex and multiplying each
of them by either −1, 0, or 1. More explicitly, we can build the below table,
in which each entry gives the coefficient of a particular ψmn(x) for a particular
term in ex.

1 x x2

2!
x3

3!
x4

4!
x5

5!
x6

6!
x7

7! . . .
ψ0,0(x) = ex 1 1 1 1 1 1 1 1 . . .
ψ1,0(x) = e−x 1 -1 1 -1 1 -1 1 -1 . . .
ψ2,0(x) = cos(x) 1 0 -1 0 1 0 -1 0 . . .
ψ2,1(x) = sin(x) 0 1 0 -1 0 1 0 -1 . . .
ψ3,0(x) 1 0 0 0 -1 0 0 0 . . .
ψ3,1(x) 0 1 0 0 0 -1 0 0 . . .
ψ3,2(x) 0 0 1 0 0 0 -1 0 . . .
ψ3,3(x) 0 0 0 1 0 0 0 -1 . . .
...

...
...

...
...

...
...

...
...

. . .

On examining this table, one is struck by a very regular pattern. If we
interpret the entries in each row as components of a vector in Euclidean space,
it is fairly evident that the vectors are orthogonal.

To formalize this idea, let us define the vectors corresponding to the above
table as follows. We take a finite approximation to Cairns space, where we
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consider only the first M levels and the first L ≡ 2M terms from functions in
each of these levels. We recover the full Cairns space in the limit as M →∞.

~vm,n,L(t) =
{

(−1)t÷2m−1
if n = t mod 2m−1 and 0 ≤ t < L;

0 Otherwise.
(6.2)

for

M ≥ 0 (6.3)
L = 2M (6.4)
m = 0, 1, . . . ,M (6.5)
n = 0, 1, . . . , d2m−1e − 1 (6.6)

As is proved in Appendix D, this set of vectors is orthogonal: i.e.,

~v0m0,n0,L ◦ ~v1m1,n1,L = 0 Unless m0 = m1 and n0 = n1 (6.7)

Notice that L is equal to the total number of Cairns functions through level
M . More explicitly,

M L # of Functions Functions
0 1 1 ψ0,0(x)
1 2 2 ψ0,0(x), ψ1,0(x)
2 4 4 ψ0,0(x), ψ1,0(x), ψ2,0(x), ψ2,1(x)
3 8 8 ψ0,0(x), ψ1,0(x), ψ2,0(x), ψ2,1(x), ψ3,0(x), ψ3,1(x), ψ3,2(x), ψ3,3(x)
. . . . . . . . . . . .

This is a quite useful feature. It tells us that the first L vectors as defined
above form an orthogonal set covering all Taylor series with degree less than L.

Consequently, any Taylor polynomial can be reversibly projected onto (a
finite approximation of) Cairns space simply by computing a series of L dot
products. And since the vectors to be projected onto contain only −1, 0 and 1
entries, computing the dot products requires only addition and subtraction of
the terms in the Taylor series, followed by a divide to scale for the length of the
vector projected onto.

We can normalize the vectors defined above into an orthonormal basis set
by dividing each by its length. Since the fraction of terms that are non-zero at
level m is 1

d2m−1e , the number of non-zero terms in ~vm,n,L is L
d2m−1e . Since the

non-zero terms are all either 1 or −1, the vector length is

||~vm,n,L|| =
√
L/d2m−1e (6.8)

and of course the normalized basis vectors are
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v̂m,n,L =
~vm,n,L

||~vm,n,L||
(6.9)

In this chapter, we have seen that any function defined by a Taylor series
can be trivially and reversibly mapped onto the Cairns functions by orthogonal
projection. Once this mapping is complete, the function can be viewed in terms
of its hyperbolic and circular components, simply by switching to the algebraic
(Em,n(x)) interpretation.

Doing so provides a decomposition similar to Fourier analysis; but while
Fourier analysis represents only the periodic properties of the source function,
Cairns space provides a balanced treatment of both exponential and periodic
characteristics.

It may also be of interest that after projecting onto Cairns space one can
measure a curvature associated with a function, in the sense outlined in Sec-
tion 8.2, by calculating the relative weight of the projection on higher m-levels.
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Chapter 7

The Broom Theorems

While the ψm,n(x) functions define linearly-independent vectors, in the sense
described in Chapter 6, there are methods to move between them using non-
linear transforms. I call the methods for doing so the “broom theorems”, since
they allow information to be “swept” to different parts of Cairns space. To
sweep up or down through the levels of Cairns space requires imaginary factors.
It is also possible to “sweep sideways” at a particular level, through use of a
displacement.

Roughly speaking,

• To sweep from a lower level mu to a higher level mv, we pick a set of
ψmv,n(x) that cover the same terms as a given ψmu,n(x), use an imagi-
nary factor to “turn off” the sign alternation at level mv, then pick the
appropriate sign for each function at level mv to build up the ψmu,n(x).

• To sweep from a higher level mv to a lower level mu, we pick the function
at level mu that covers the same terms. It will also cover other terms. We
duplicate the function at level mu and use imaginary factors to cancel out
the terms we do not need.

• To move sideways at a given m-level, we expand a function in its Taylor
series, then group it in terms of the other functions at the same level in
such a way that the original function is spread over all functions at that
level.

The formalizations are provided below. See Appendix E for proofs.

7.1 Sweeping Up

To move from a lower to a higher m-level, we have
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ψmu,n(x) =
c−1∑
p=0

i(−pd2
mu−1e+n)/d2mv−2e · (7.1)

(−1)pd2
mu−1e ·

ψ(mv ,td2mu−1e+n)(xi
(22−mv ))

Where 0 ≤ mu < mv and c ≡ 2mv−1/d2mu−1e

Here are examples, which can be checked by expanding their Taylor series.

• Map ψ0,0(x) = ex to level m = 1. mu = 0, mv = 1, n = 0, c = 1.
We have ψ0,0(x) = ψ1,0(−x), which is equivalent to the statement that
ex = e−(−x).

• Map ψ0,0(x) = ex to level m = 2. mu = 0, mv = 2, n = 0, c = 2. We
have ψ0,0(x) = ψ2,0(ix)+i−1ψ2,1(ix), which is equivalent to the statement
ex = cos(ix)+ i−1 sin(ix). This is in a sense the inverse of Euler’s formula;
it is also equivalent to the hyperbolic identity ex = cosh(x) + sinh(x).

• Map ψ1,0(x) = e−x to level m = 2. mu = 1, mv = 2, n = 0, c = 2. We
have ψ1,0(x) = ψ2,0(ix)−i−1ψ2,1(ix), which is equivalent to the statement
e−x = cos(ix) +−i−1 sin(ix).

• Map ψ2,0(x) = cosx to level m = 3. mu = 2, mv = 3, n = 0, c = 2. We
have ψ2,1(x) = i−1/2ψ3,1(i1/2x)− i−3/2ψ3,3(i1/2x).

• Map ψ2,1(x) = sinx to level m = 4. mu = 2, mv = 4, n = 1, c = 4. We
have

ψ2,1(x) = i−1/4ψ4,1(i1/4x)−i−3/4ψ4,3(i1/4x)+i−5/4ψ4,5(i1/4x)−i−7/4ψ4,7(i1/4x)

.

7.2 Sweeping Down

ψmv,n(x) =
(

1
c

) c−1∑
p=0

i−n(2p+1)(22−mv )ψmu,n(xi(2p+1)(22−mv )) (7.2)

Where 0 ≤ mu < mv and c ≡ 2mv−1/d2mu−1e

The i(2
2−mv ) factor in the ψmu,n argument is designed to provide a sign

alternation every 2mv−1 terms, which corresponds to the sign alternation pattern
for level mv. The (2p+ 1) factor is designed to cancel out the unwanted terms
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at level mu. The coefficient of i−n(2p+1)(22−mv ) performs a shift to handle n > 0
correctly.

Notice that in the special case mu = 0, Equation (7.2) reduces to Equa-
tion (5.10). From this viewpoint, Equation (5.10) is simply the special case
where one sweeps down to level m = 0. The proof of Equation (7.2) is there-
fore similar to the proof of Equation (5.10), differing in the number of stages
required.

Here are some examples.

• Map ψ1,0(x) = e−x to ψ0,0(x) = ex. mv = 1, mu = 0, n = 0, c = 1.
We have ψ1,0(x) = ψ0,0(−x), which is equivalent to the statement that
e−x = e(−x).

• Map ψ2,0(x) = cos(x) to ψ0,0(x). mv = 2, mu = 0, n = 0, c = 2. We have
ψ2,0(x) = 1

2

(
ψ0,0(ix) + ψ0,0(i3x)

)
, which is equivalent to the statement

that cos(x) = 1
2

(
eix + e−ix

)
, familiar from trigonometry.

• Map ψ2,0(x) = cos(x) to ψ1,0(x). mv = 2, mu = 1, n = 0, c = 2. We have
ψ2,0(x) = 1

2

(
ψ1,0(ix) + ψ1,0(i3x)

)
, which is equivalent to the statement

that cos(x) = 1
2

(
e−(ix) + e−(−ix)

)
, equivalent to the above.

• Map ψ3,0(x) to ψ2,0(x). mv = 3, mu = 2, n = 0, c = 2. We have
ψ3,0(x) = 1

2

(
ψ2,0(i1/2x) + ψ2,0(i3/2x)

)
, which can be checked by expand-

ing the corresponding Taylor series.

• Map ψ3,0(x) to ψ0,0(x). mv = 3, mu = 0, n = 0, c = 4. We have ψ3,0(x) =
1
4

(
ψ0,0(i1/2x) + ψ0,0(i3/2x) + ψ0,0(i5/2x) + +ψ0,0(i7/2x)

)
, which again can

be checked by expanding the Taylor series.

• Map ψ3,1(x) to ψ2,1(x). mv = 3, mu = 2, n = 1, c = 2. We have
ψ3,1(x) = 1

2

(
i−1/2ψ2,1(i1/2x) + i−3/2ψ2,1(i3/2x)

)
, again checkable from

the Taylor series.

7.3 Sweeping Sideways

We can spread any function at level m over all of the functions at level m by
introducing a displacement. The general rule is as follows (see Appendix E for
a proof)

ψm,n(x) =
d2m−1e−1∑

p=0

whole(n− p)ψm,p(x− a)ψm,(n−p)modd2m−1e−1(a) (7.3)

Where we define whole(n− p) = 1 for (n− p) ≥ 0 and −1 otherwise.1

1whole is slightly different from the standard sgn function in that whole returns 1 if (n−p) =
0, whereas sgn returns 0.
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For instance,

• For m = 0, n = 0, we have ψ0,0(x) = ψ0,0(x − a)ψ0,0(a), which in more
familiar notation reads ex = ex−aea.

• For m = 1, n = 0, we have ψ1,0(x) = ψ1,0(x− a)ψ1,0(a), which is equiva-
lent to e−x = e−(x−a)e−a.

• For m = 2, n = 0 we have ψ2,0(x) = ψ2,0(x−a)ψ2,0(a)−ψ2,1(x−a)ψ2,1(a),
or equivalently cos(x) = cos(x − a) cos(a) − sin(x − a) sin(a). With the
change of variables u = x − a, v = a, this is equivalent to the familiar
double-angle formula cos(u+ v) = cos(u) cos(v)− sin(u) sin(v).

• For m = 2, n = 1 we have ψ2,1(x) = ψ2,0(x−a)ψ2,1(a)+ψ2,1(x−a)ψ2,0(a),
or equivalently sin(x) = cos(x− a) sin(a) + sin(x− a) cos(a), which again
is a familiar double-angle formula.

• For m = 3, n = 0 we have

ψ3,0(x) = ψ3,0(x−a)ψ3,0(a)−ψ3,1(x−a)ψ3,3(a)−ψ3,2(x−a)ψ3,2(a)−ψ3,3(x−a)ψ3,1(a)
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Chapter 8

Sundry Findings

This chapter collects findings that are either not sufficiently important, or not
sufficiently developed, to merit their own chapters.

8.1 Pythagorean Identities

Consider the well-known identity cos2(x) + sin2(x) = 1. This can be derived
from Euler’s formula by comparing

eixe−ix = e0 = 1 (8.1)

With

eixe−ix = (cos(x) + i sin(x))(cos(−x) + i sin(−x)) (8.2)

= (cos(x) + i sin(x))(cos(x)− i sin(x)) (8.3)

= cos(x) cos(x) + sin(x) sin(x) (8.4)

= cos2(x) + sin2(x) (8.5)

Since the left sides of Equations (8.1) and (8.5) are equal, the right sides
must also be equal: hence, cos2(x) + sin2(x) = 1.

Precisely the same procedure can be completed for m = 3, although the
algebra is slightly more complicated. One finds

exi
1/2

e−xi
1/2

= e0 = 1 (8.6)
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And

exi1/2
e−xi1/2

=
(
ψ3,0(x) + i

1
2ψ3,1(x) + iψ3,2(x) + i

3
2ψ3,3(x)

)
· (8.7)(

ψ3,0(x)− i
1
2ψ3,1(x) + iψ3,2(x)− i

3
2ψ3,3(x)

)
After multiplying through and canceling terms, we have

1 = (ψ2
3,0(x)− ψ2

3,2(x) + 2ψ3,1(x)ψ3,3(x)) + (8.8)

i(ψ2
3,3(x)− ψ2

3,1(x) + 2ψ3,0(x)ψ3,2(x)) (8.9)

Since the left-side of the above has no imaginary part, we have the two
identities

1 = ψ2
3,0(x)− ψ2

3,2(x) + 2ψ3,1(x)ψ3,3(x) (8.10)

0 = ψ2
3,3(x)− ψ2

3,1(x) + 2ψ3,0(x)ψ3,2(x) (8.11)

The differential relationships between the ψ3,n(x) allow us the option to
write these identities equivalently as

1 = ψ3,0(x)ψ′3,1(x)− ψ3,1(x)ψ′3,0(x) + (8.12)
ψ3,3(x)ψ′3,2(x)− ψ3,2(x)ψ′3,3(x)

0 = ψ3,0(x)ψ′3,3(x)− ψ3,3(x)ψ′3,0(x) + (8.13)
ψ3,2(x)ψ′3,1(x)− ψ3,1(x)ψ′3,2(x)

Which can be described in determinant form, if desired.

1 =
∣∣∣∣ ψ3,0(x) ψ3,1(x)
ψ′3,0(x) ψ′3,1(x)

∣∣∣∣− ∣∣∣∣ ψ3,2(x) ψ3,3(x)
ψ′3,2(x) ψ′3,3(x)

∣∣∣∣
and

0 =
∣∣∣∣ ψ3,0(x) ψ3,3(x)
ψ′3,0(x) ψ′3,3(x)

∣∣∣∣− ∣∣∣∣ ψ3,1(x) ψ3,2(x)
ψ′3,1(x) ψ′3,2(x)

∣∣∣∣
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Yet another way of representing these identities involves the natural loga-
rithm.

1 = −(ψ3,1(x)ψ′3,0(x)− ψ3,0(x)ψ′3,1(x)) + (8.14)
(ψ3,3(x)ψ′3,2(x)− ψ3,2(x)ψ′3,3(x))

= − d

dx

(
ψ3,0(x)
ψ3,1(x)

)
ψ2

3,1(x) +
d

dx

(
ψ3,2(x)
ψ3,3(x)

)
ψ2

3,3(x) (8.15)

= − d2

dx2
(ln(ψ3,1(x)))ψ2

3,1(x) +
d2

dx2
(ln(ψ3,3(x)))ψ2

3,3(x) (8.16)

And similarly

0 = − d2

dx2
(ln(ψ3,0(x)))ψ2

3,0(x) +
d2

dx2
(ln(ψ3,2(x)))ψ2

3,2(x)

These relationships exist in simpler form at m = 2 with ψ2,0(x) = cos(x)
and ψ2,1(x) = sin(x). For instance,

1 = cos2(x) + sin2(x) (8.17)
= ψ2

2,0(x) + ψ2
2,1(x) (8.18)

= ψ2,0(x)ψ′2,1(x) + ψ2,1(x)(−ψ′2,0(x)) (8.19)
= ψ2,0(x)ψ′2,1(x)− ψ2,1(x)ψ′2,0(x) (8.20)

The same procedure can be pursued for higher m-levels.

8.2 Curvature

Equation (3.8) can be thought of as defining a triangle with angle x sin(π21−m)
and magnitude ex cos(π21−m).

Let us define

θm ≡ x sin(π21−m) (8.21)

Lm ≡ ex cos(π21−m) (8.22)

For fixed x, as m increases θm decreases and Lm increases. The triangle
becomes longer and narrower.

We can also form a triangle by adding across m-levels the real and imaginary

parts of exi(22−m)
. If we do so, for positive x the larger m-levels will dominate
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the summation as x increases, since they grow more rapidly with x. This implies
that as x increases, the composite triangle will become more narrow; or, put
differently, the angle between the sides of the triangle depends on the length of
the sides. This is a characteristic of non-Euclidean geometry.

For negative x, as the magnitude of x increases the relative influence of the
higher m-levels will decline, because they decrease more rapidly with negative
x.

If we view from the perspective of (say) level m = 5, the composite triangle
will appear to narrow with increasing positive x, and widen with decreasing neg-
ative x. The former corresponds to elliptical geometry, the latter to hyperbolic
geometry.

Note that m = 2 provides a perfectly Euclidean geometry.

8.3 The Inner Product on Level m

It is possible to compute the inner product at levelm with the following equation
(see Appendix F for a derivation).

Em,n(x) ◦ Em,n(x+ α) (8.23)

≡
d2m−1e−1∑

n=0

Em,n(x)Em,n(x+ α)

=
1

d2m−1e

d2m−1e−1∑
n=0

e2x cos(π(2p+1)21−m)eαi
−(2p+1)22−m

Here are some examples.

• For m = 0, Equation (8.24) reduces to

E0,0(x)E0,0(x+ α) = exex+α (8.24)

= e2x cos(2π)eαi
−4

(8.25)

= e2xeα (8.26)

= e2x+α (8.27)

which is simply the familiar rule for adding exponents.
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• For m = 1, Equation (8.24) reduces to

E1,0(x)E1,0(x+ α) = e−xe−x−α (8.28)

= e2x cos(π)eαi
−2

(8.29)

= e−2xe−α (8.30)

= e−2x−α (8.31)

which is the rule for adding negative exponents.

• For m = 2, Equation (8.24) reduces to

E2,0(x)E2,0(x+ α) + E2,1(x)E2,1(x+ α) (8.32)

= cos(x) cos(x+ α) + sinx sin(x+ α) (8.33)

=
1

2

(
e2x cos(π/2)eαi

−1

+ e2x cos(3π/2)eαi
−3

)
(8.34)

=
1

2

(
e0eα(−i) + e0eαi

)
(8.35)

= cos(α) (8.36)

This is also familiar, as the dot product of two vectors in a two-dimensional
Euclidean plane.

For m ≥ 3 the inner product becomes more complex, but no less interesting.1

Notice that only for m = 2, corresponding to Euler’s formula, is the inner
product independent of x. This is to be expected:2 only for m = 2 does the

suitcase term exi(22−m)
correspond to a perfect circle, with no growth term.

8.4 Differentiation, Rotation and Displacement

Differentiation (or integration), imaginary rotation and displacement are closely
related in Cairns space. We can write

d

dx
exi

(22−m)
= i(2

2−m)exi
(22−m)

(8.37)

= eiπ21−m

exi
(22−m)

(8.38)

= e
i(2

2−m)
“
x+iπ21−mi−(22−m)

”
(8.39)

1Although notably more difficult to typeset.
2In retrospect, I admit.

29



For conciseness, define the displacement

∆m ≡ iπ21−mi−(22−m) (8.40)

Then

d

dx
exi

(22−m)
= i(2

2−m)exi
(22−m)

= e(x+∆m)i(22−m)
(8.41)

So we can think of differentiation as either an imaginary multiplication
(which implies a rotation in the complex plane) or as a shift in the value of
x by ∆m.3 ∆m is a characteristic value of a given m-level. We find

• For m = 0, ∆0 = 2πi;

• For m = 1, ∆1 = −πi;

• For m = 2, ∆2 = π/2;

• For m = 3, ∆3 = πi1/2/4;

• For m = 4, ∆4 = πi3/4/8

For instance, for m = 1 we have

d

dx
e−x = e−(x+∆m) = e−x+πi = e−xeπi = e−x(−1) = −e−x

Since

exi(22−m)
=
d2m−1e−1∑

n=0

in22−m

Emn(x) (8.42)

We can equate the two views of differentiation to get

d2m−1e−1∑
n=0

in22−m

Emn(x+ ∆m) =
d2m−1e−1∑

n=0

i(n+1)22−m

Emn(x) (8.43)

3To integrate instead of differentiate, simply reverse the exponent sign of i(2
2−m) to

i−(22−m), and reverse the sign of ∆m.
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Note, however, that the above is a statement about the summation as a
whole, not about particular terms in the summation. In particular, for m ≥ 3
it is not true that4

Em,n<d2m−1e−1(x)
?= Em,n+1(x+ ∆m) False! (8.44)

However, Equation (8.44) is true for m = 2, where it reduces to the familiar
rule that

cos(x) = sin(x+ π/2)

8.5 The Roots of nth-Degree Polynomials

It is a singular fact that the equation

a cos(x)− b sin(x) = 0 (8.45)

can be solved simply by rotation.5

To see this, note that if a and b are not both zero, we can write the above
as

L

(
a

L
cos(x)− b

L
sin(x)

)
= 0 (8.46)

for L ≡
√
a2 + b2.

a
L and b

L are now in the form of the cos and sin of some angle α, defined by

cos(α) =
a

L
⇒ α = arccos(

a

L
) (8.47)

Or equivalently

sin(α) =
b

L
⇒ α = arcsin(

b

L
) (8.48)

α is the angle formed by a right triangle with sides a and b and hypotenuse
L.

This gives us

L (cos(α) cos(x)− sin(α) sin(x)) = 0 (8.49)
4see Section 7.3 for the general relationship between functions at a given level.
5Taking the second term to be negative is of course arbitrary, but useful below.
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Or

L cos(α+ x) = 0 (8.50)

This is a remarkable relationship. It says that any sum of a cos and sin
function with the same period is equal to a single shifted, scaled cos function.

And while it is not clear for what values of x

a cos(x)− b sin(x) = 0 (8.51)

is true,

L cos(α+ x) = 0 (8.52)

obviously holds when x = ±π/2 − α. The roots are found simply by rotating
by ±π/2 from −α.

Does a generalization of the above hold for Cairns space generally? If so,
one could imagine solving for the roots of polynomials by projecting onto Cairns
space and performing rotations.

Here is an intriguing special case. From Equation (3.8) we know that the

real and imaginary parts of exi(22−m)
are respectively

Rm(x) = ex cos(π21−m) cos(x sin(π21−m)) (8.53)

Im(x) = ex cos(π21−m) sin(x sin(π21−m)) (8.54)

and therefore we have the ratio

Im(x)
Rm(x)

= tan(x sin(π21−m)) (8.55)

From Equation (5.12) we know that Em,n(x) has associated with it a coef-
ficient of in(22−m). We may split this into real and imaginary components as
follows.

in(22−m) = eiπn(21−m) = cos(πn21−m) + i sin(πn21−m) (8.56)

and therefore, from Equation (5.12), we have
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Rm(x) =
d2m−1e−1∑

n=0

cos(πn21−m)Emn(x) (8.57)

Im(x) =
d2m−1e−1∑

n=0

sin(πn21−m)Emn(x) (8.58)

In a sense, cos(πn21−m) and sin(πn21−m) are the “natural” coefficients of
Em,n(x) (or of ψm,n(x)). For any polynomial consisting of terms at level m
with coefficients that are multiples of the natural coefficients, finding roots of
the polynomial is trivial. More explicitly, let

d2m−1e−1∑
n=0

anEmn(x) = 0 (8.59)

If there are kR and kI such that

an = kR cos(πn21−m) + kI sin(πn21−m) (8.60)

then a solution is6

x = arctan(
−kR

kI
)/ sin(π21−m) (8.61)

One can imagine using the broom theorems, or other means, to collect the
projection of a polynomial onto a single level, then distribute it according to the
natural coefficients. However, If there is a general solution to the problem of
finding polynomial roots in Cairns space I have not found it as yet, and not for
lack of trying. I will not describe here the techniques that do not work, for the
enumeration is dismal; and the hand of time is fleeting, and my cigar is burning
out.

6Incidentally, there is a “hyperbolic dual” in which one uses Equation (3.12) to break the
suitcase into hyperbolic, rather than circular, components.
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Chapter 9

Conclusion

But we are not conceived as angels are:
A thousand mindless cares our minds must mar,
Whose troubled tides, through time, turn tyrannous tsar.

In this monograph, the nine characters of the suitcase, exi(22−m)
, have been

unpacked to some sixty pages; and it is clear that we have seen neither the sides
nor the depths of the matter.

There is an interesting debate as to whether mathematics is invented or
discovered. On my own experience, I must come down solidly on the side of
discovered. I could not have invented the magic suitcase, simply because it is
much smarter than I am.

I found what I would not have imagined, nor thought possible if imagined,
nor known how to achieve if thought possible. I stumbled across things, very
much like a child at the beach, or (in my better moments) like an archaeologist
carefully excavating a buried palace. I learned mathematics by studying the
suitcase; I taught it nothing.

I have a strong sense of mathematics as existing in a “place”. A place very
different from what we are used to, to be sure, but a place nonetheless. If
one asks if it is a place as real as one on Earth, I would say “more real”. It
existed before our planet was formed, it will exist after the Earth is gone; it is
independent of our universe itself. And it is independent of ourselves as well.
No one can carve their initials in the sides of mathematics.

There is something glorious about learning mathematics, but a kind of sad-
ness as well. I do not fully understand what the suitcase entails, and I very
much suspect that I never will. I am conscious of dimly viewing a garden to
which I can never find the key, and can never be admitted.

’Tis ever and of needs a sorrowful grace
To see a distant beauty, but in trace,
And know it is no work of mortal race.
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Appendix A

Derivation of ψmn(x)

In Chapter 4, it was stated that by grouping terms with like coefficients of i one
could write the suitcase as

exi
(22−m)

=

d2m−1e−1∑
n=0

in21−m

ψmn(x) (A.1)

where

ψmn(x) =
∞∑
t=0

(−1)td2
1−me xtd2

m−1e+n

(td2m−1e+ n)!
(A.2)

This appendix proves this assertion, by a generalization of the procedure

given in Chapter 4 for m = 2 and m = 3. We proceed by expanding exi(22−m)
as

a Taylor series and grouping terms.

exi(22−m)
≡

∞∑
t=0

(
xi(2

2−m)
)t

t!
(A.3)

=
∞∑

t=0

(
xti(t22−m)

)
t!

(A.4)

Notice that

i(t22−m) = −1
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Occurs when

t22−m = 2 ⇒ t = 2 · 2m−2 (A.5)
= 2m−1 (A.6)

After t = 2m−1 terms the pattern of i exponents will repeat, with sign
reversed. Let us call this the “step size”.

Since we are interested in grouping terms with like factors of i, we need to
collect terms that are separated by the step size. This gives us (roughly)

exi
(22−m)

=

d2m−1e−1∑
n=0

in(22−m) (A.7)

·
∞∑
t=n

(−1)t
xt2

m−1+n

(t2m−1 + n)!
(A.8)

Essentially, we simply define ψmn(x) by the second summation in the above
equation. The one remaining issue is to handle the case m ≤ 0 correctly, which
corresponds to the function ex.

Comparison with the Taylor series for ex suggests that we change 2m−1 to
d2m−1e. This prevents 2m−1 from becoming fractional for m ≤ 0, and provides
the correct behavior for ex. (Of course, the ceiling functions have no effect for
m ≥ 1.)

The second issue for m ≤ 0 is to get the sign right. For m ≤ 0 the step size
t = 2m−1 is less than one; the meaning is that the sign never changes.1 We can
handle this special case adequately, if not entirely elegantly, by writing

ψmn(x) =
∞∑
t=0

(−1)td2
1−me xtd2

m−1e+n

(td2m−1e+ n)!
(A.9)

For m ≥ 1 the d21−me factor is simply 1 and has no effect. For m ≤ 0 this
factor will be a power of two; since −1 raised to any power of two is 1, this has
the effect of preventing a sign change between terms.2

1More precisely, it implies that the sign changes at least twice between adjacent terms, so
that by the time one gets to the next term the sign is back where it was.

2In the software industry, this would be known as a “hack”. I prefer the phrase “adequate,
if not entirely elegant.”

36



Appendix B

Proof of the Equivalence of
ψmn(x) and Emn(x)

This appendix proves that as claimed by Equation (5.11), the Taylor series view

of the components of exi(22−m)
, given by ψmn(x), is equivalent to the algebraic

view of the components given by Emn(x).
To review, these two views of the suitcase are defined by

ψmn(x) =
∞∑
t=0

(−1)td2
1−me xtd2

m−1e+n

(td2m−1e+ n)!
(B.1)

Emn(x) ≡ 1

d2m−1e

d2m−1e−1∑
p=0

i−n(2p+1)22−m

exi
(2p+1)22−m

(B.2)

Note that it is sufficient to prove the case for Em,0(x) = ψm,0(x). Since the
ψmn(x) and Emn(x) can be defined by differentiation (or integration) of ψm,0(x)
and Em,0(x) respectively, the equivalence of Em,0(x) and ψm,0(x) implies the
equivalence of all other functions in their respective families.

The proof proceeds by expanding Em,0(x) as a sum of Taylor series, then
recursively canceling terms until we are left with ψm,0(x).

Em,0(x) ≡ 1

d2m−1e

d2m−1e−1∑
p=0

exi
(2p+1)22−m

(B.3)

=
1

d2m−1e

d2m−1e−1∑
p=0

∞∑
t=0

(
xi(2p+1)22−m

)t
t!

(B.4)
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where in the last step we expanded the exponential as a Taylor series. Next,
split the series into 2m−1 overlapping summations, with index n. This gives us

Em,0(x) =
1

d2m−1e

d2m−1e−1∑
n=0

d2m−1e−1∑
p=0

∞∑
t=0

(B.5)

(
xi(2p+1)22−m

)d2m−1et+n

(d2m−1et+ n)!
(B.6)

=
1

d2m−1e

d2m−1e−1∑
n=0

d2m−1e−1∑
p=0

∞∑
t=0

(B.7)

[(
i(2p+1)22−m

)d2m−1et+n
]

xd2
m−1et+n

(d2m−1et+ n)!
(B.8)

For n = 0, the term in square brackets becomes

d2m−1e−1∑
p=0

[
i2ti4pt

]
=

d2m−1e−1∑
p=0

[
(−1)t(1)pt

]
(B.9)

= d2m−1e(−1)t (B.10)

Consequently, for n = 0 we have ψm,0(x) = Em,0(x). Therefore, to prove
ψm,0(x) = Em,0(x) it is necessary and sufficient to prove that the terms in
square brackets are always zero for n ≥ 1.

The terms in square brackets can be written as

d2m−1e−1∑
p=0

i2ti4ptin22−m

ipn23−m

=
d2m−1e−1∑

p=0

(−1)tin(2p+1)22−m

(B.11)

Next, split the above summation into two parts, essentially comparing the
first and second quadrants of the complex plane to the third and fourth quad-
rants. We obtain

d2m−2e−1∑
p=0

(−1)tin(2p+1)(22−m) +
d2m−1e−1∑
p=d2m−2e

(−1)tin(2p+1)(22−m) (B.12)
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Reparameterizing the second sum gives

d2m−2e−1∑
p=0

(−1)tin(2p+1)(22−m) +
d2m−1e−1∑
p=d2m−2e

(−1)tin(2p+1)(22−m) (B.13)

=
d2m−2e−1∑

p=0

(−1)tin(2p+1)(22−m) (B.14)

+
d2m−2e−1∑

p=0

(−1)tin(2[p+2m−2]+1)(22−m) (B.15)

=
d2m−2e−1∑

p=0

(−1)tin(2p+1)(22−m) (B.16)

+
d2m−2e−1∑

p=0

(−1)tin(2p+1)(22−m)i2n (B.17)

=
d2m−2e−1∑

p=0

(−1)tin(2p+1)(22−m) (B.18)

+
d2m−2e−1∑

p=0

(−1)tin(2p+1)(22−m)(−1)n (B.19)

The two summations differ only by a factor of (−1)n: consequently, the sum
will be zero for any odd n. For even n, the two sums are equal, so we can rewrite
the summation as

d2m−2e−1∑
p=0

2(−1)tin(2p+1)22−m (B.20)

We can again split the summation in two, to compare the first quadrant to
the second quadrant. We find

d2m−3e−1∑
p=0

(−1)tin(2p+1)(22−m) +
d2m−2e−1∑
p=d2m−3e

(−1)tin(2p+1)(22−m) (B.21)

Reparameterizing the second summation gives
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d2m−3e−1∑
p=0

(−1)tin(2p+1)(22−m) +
d2m−3e−1∑

p=0

−1tin(2[p+2m−2]+1)(22−m) (B.22)

=
d2m−3e−1∑

p=0

(−1)tin(2p+1)(22−m) +
d2m−3e−1∑

p=0

(−1)tin(2p+1)(22−m)in(B.23)

If n contains only a single factor of 2, then in = −1 and the two summations
again cancel. Since n cannot be odd and cannot contain a single factor of n, it
must contain a factor of 4, in which case the two summations are equal to each
other.

We can repeat this process as many times as necessary to eliminate the
possibility of any n > 0 producing a non-zero sum. In general, this will take
m−1 steps, since there d2m−1epossible values of n and each step eliminates half
of the remaining possibilities.
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Appendix C

Factoring Emn(x)

This appendix derives Equations (5.39) and (5.42), relating to the factors of
Em,n(x).

C.1 Derivation of Em,0 Factors

This section proves Equation (5.39):

Em,0(x) =
1

d2m−3e

d2m−3e−1∑
p=0

cosh(cpx) cos(spx) (C.1)

Where we have used the short-hands introduced in Chapter 5:

cp ≡ cos(π(2p+ 1)21−m) (C.2)
sp ≡ sin(π(2p+ 1)21−m) (C.3)

Equation (C.1) can be derived by a generalization of the procedure given in
Chapter 5 for m = 3.

By definition (see Equation (5.9)) we have

Em,0(x) ≡
1

d2m−1e

d2m−1e−1∑
p=0

exi
(2p+1)22−m

(C.4)

We can split this summation in two, giving

Em,0(x) =
1

d2m−1e

d2m−2e−1∑
p=0

exi(2p+1)22−m

+
d2m−1e−1∑
p=d2m−2e

exi(2p+1)22−m

 (C.5)

41



The general idea is to build cos(x) terms by combining terms between the two
summations. We will then repeat the process to build the cosh(x) terms. To
begin, we first reparameterize the second summation.

d2m−1e−1∑
p=d2m−2e

exi
(2p+1)22−m

=

d2m−2e−1∑
p=0

exi
(2(p+d2m−2e)+1)22−m

(C.6)

=

d2m−2e−1∑
p=0

exi
(2p+1)22−m

i2 (C.7)

Next, we reverse the direction of the second summation, by replacing
p with d2m−2e − 1 − p. This is important because we will want to
group the first terms of the first summation with the last terms of
the second summation.

d2m−2e−1∑
p=0

exi
(2p+1)22−m

i2 =

d2m−2e−1∑
p=0

exi
(2(d2m−2e−1−p)+1)22−m

i2 (C.8)

Noting that i2 = i(2
m−122−m), we can write
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d2m−2e−1∑
p=0

exi
(2(d2m−2e−1−p)+1)22−m

i2 (C.9)

=

d2m−2e−1∑
p=0

exi
(2m−1+2(d2m−2e−1−p)+1)22−m

(C.10)

=

d2m−2e−1∑
p=0

exi
(2m−1+(2m−1−2−2p)+1)22−m

(C.11)

=

d2m−2e−1∑
p=0

exi
(2m−1−2p)22−m

(C.12)

=

d2m−2e−1∑
p=0

exi
4i(−2p−1)22−m

(C.13)

=

d2m−2e−1∑
p=0

exi
−(2p+1)22−m

(C.14)

Next, plug back into Equation (C.5) to get

Em,0(x) =
1

d2m−1e

d2m−2e−1∑
p=0

exi
(2p+1)22−m

+

d2m−2e−1∑
p=0

exi
−(2p+1)22−m


(C.15)

As in Chapter 3, we can use the equation

i = eiπ/2

to simplify the summation further. We have

43



exi
(2p+1)22−m

+ exi
−(2p+1)22−m

= exe
(iπ(2p+1)22−m)/2

+ exe
−(iπ(2p+1)22−m)/2

= ex(cos(π(2p+1)21−m)+i sin(π(2p+1)21−m)) + ex(cos(−π(2p+1)21−m)+i sin(−π(2p+1)21−m))

= ex(cos(π(2p+1)21−m)+i sin(π(2p+1)21−m)) + ex(cos(π(2p+1)21−m)−i sin(π(2p+1)21−m))

= ex cos(π(2p+1)21−m)
(
eix sin(π(2p+1)21−m) + eix sin(−π(2p+1)21−m)

)
= ex cos(π(2p+1)21−m)(cos(x sin(π(2p+ 1)21−m)) + i sin(x sin(π(2p+ 1)21−m))

+ cos(x sin(−π(2p+ 1)21−m)) + i sin(x sin(−π(2p+ 1)21−m)))

= ex cos(π(2p+1)21−m)(cos(x sin(π(2p+ 1)21−m)) + i sin(x sin(π(2p+ 1)21−m))

+ cos(x sin(π(2p+ 1)21−m))− i sin(x sin(π(2p+ 1)21−m)))

= ex cos(π(2p+1)21−m)
(
2 cos(x sin(π(2p+ 1)21−m))

)
= 2ex cos(π(2p+1)21−m) cos(x sin(π(2p+ 1)21−m))

Our summation is therefore

Em,0(x) =
1

d2m−1e

d2m−2e−1∑
p=0

2ex cos(π(2p+1)21−m) cos(x sin(π(2p+ 1)21−m))

=
1

d2m−2e

d2m−2e−1∑
p=0

ex cos(π(2p+1)21−m) cos(x sin(π(2p+ 1)21−m))

The next step is to collapse the ex cos(π(2p+1)21−m) factors to pro-
duce cosh(x). We proceed as above, splitting the series in two,
reparameterizing, reversing direction and grouping terms.
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Em,0(x)

=
1

d2m−2e

d2m−2e−1∑
p=0

ex cos(π(2p+1)21−m) cos(x sin(π(2p+ 1)21−m))

=
1

d2m−2e
(

d2m−3e−1∑
p=0

ex cos(π(2p+1)21−m) cos(x sin(π(2p+ 1)21−m))

+

d2m−2e−1∑
p=d2m−3e

ex cos(π(2p+1)21−m) cos(x sin(π(2p+ 1)21−m)))

Focusing on the second summation for the moment, we find

d2m−2e−1∑
p=d2m−3e

ex cos(π(2p+1)21−m) cos(x sin(π(2p+ 1)21−m))

=

d2m−3e−1∑
p=0

ex cos(π(2(p+2m−3)+1)21−m) cos(x sin(π(2(p+ 2m−3) + 1)21−m))

=

d2m−3e−1∑
p=0

ex cos(π(2p+1)21−m+π/2) cos(x sin(π(2p+ 1)21−m + π/2))

We now reverse the order of summation by substituting d2m−3e−1−p
for p.

d2m−3e−1∑
p=0

ex cos(π(2p+1)21−m+π/2) cos(x sin(π(2p+ 1)21−m + π/2))

=

d2m−3e−1∑
p=0

ex cos(π(2(d2m−3e−1−p)+1)21−m+π/2)

· cos(x sin(π(2(d2m−3e − 1− p) + 1)21−m + π/2))

=

d2m−3e−1∑
p=0

ex cos(π−π(2p+1)21−m) cos(x sin(π − π(2p+ 1)21−m))
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Two useful identities are

cos(π − k) = − cos(k)

sin(π − k) = − sin(k)

Using these identities, the summation reduces further to

d2m−3e−1∑
p=0

ex cos(π−π(2p+1)21−m) cos(x sin(π − π(2p+ 1)21−m))

=

d2m−3e−1∑
p=0

e−x cos(π(2p+1)21−m) cos(−x sin(π(2p+ 1)21−m))

=

d2m−3e−1∑
p=0

e−x cos(π(2p+1)21−m) cos(x sin(π(2p+ 1)21−m))

Plugging the above back into Equation (C.16), we find

Em,0(x)

=
1

d2m−2e

d2m−2e−1∑
p=0

ex cos(π(2p+1)21−m) cos(x sin(π(2p+ 1)21−m))

=
1

d2m−2e

d2m−3e−1∑
p=0

(
ex cos(π(2p+1)21−m) + e−x cos(π(2p+1)21−m)

)
cos(x sin(π(2p+ 1)21−m))

Collapsing the exponential sum, we have

Em,0(x) =
1

d2m−3e

d2m−3e−1∑
p=0

cosh(x cos(π(2p+ 1)21−m)) cos(x sin(π(2p+ 1)21−m))

=
1

d2m−3e
1

d2m−3e
cosh(xcp) cos(xsp)

As advertised. Equation (C.16) holds for m ≥ 2; for m ≤ 0 we of
course have simply Em,0 = ex, and for m = 1 we have E1,0 = e−x.

46



We now know how to express Em,0(x) in terms of the cosh(x) and
cos(x) functions. Given this, all Em,n(x) can be found by repeated
differentiation or integration.

In the next section, we will see another means to compute Emn(x).

C.2 Emn(x)

By definition,

Em,0(x)

≡ 1

d2m−1e

d2m−1e−1∑
p=0

exi
(2p+1)2m−2

=
1

d2m−1e

d2m−1e−1∑
p=0

ex cos((2p+1)π2m−1)eix sin((2p+1)π2m−1)

=
1

d2m−1e

d2m−1e−1∑
p=0

ecpxeispx

=
1

d2m−1e

d2m−1e−1∑
p=0

(cosh(cpx) + sinh(cpx)) (cos(spx) + i sin(spx))

=
1

d2m−1e

d2m−1e−1∑
p=0

cosh(cpx) cos(spx) + sinh(cpx) cos(spx)

+i cosh(cpx) sin(spx) + i sinh(cpx) sin(spx)

Since each integration brings down a factor of i−(2p+1)2m−2
for the

pth term, we have

Emn(x)

=
1

d2m−1e

d2m−1e−1∑
p=0

i−n(2p+1)2m−2

·(cosh(cpx) cos(spx) + sinh(cpx) cos(spx)

+i cosh(cpx) sin(spx) + i sinh(cpx) sin(spx))
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Appendix D

The Orthogonality of ψmn(x)
Coefficients

This appendix proves the orthogonality of the vectors defined by
Equation (6.2)

~vm,n,L(t) =

{
(−1)t÷2m−1

if n = t mod 2m−1 and 0 ≤ t < L;
0 Otherwise.

(D.1)

for

M ≥ 0 (D.2)

L = 2M (D.3)

m = 0, 1, . . . ,M (D.4)

n = 0, 1, . . . , d2m−1e − 1 (D.5)

That is,

~vm0,n0,L ◦ ~vm1,n1,L = 0 Unless m0 = m1 and n0 = n1 (D.6)

To prove this, we need only consider vector components t in which
both ~v0 and ~v1 both have non-zero values. This occurs when t is such
that
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0 ≤ t < L (D.7)

n0 = t mod 2m0 (D.8)

n1 = t mod 2m1 (D.9)

The first observation is that any two vectors in the same level
(i.e., samem-value) are orthogonal. Ifm0 = m1 then n0 = n1, which
says that no two distinct vectors at the same level share any non-zero
entries. This is apparent from the table provided in Chapter 5.

For m0 6= m1, assume without loss of generality that m1 > m0.
Equation (6.2) allows us to break a vector into exactly L/2m inter-
vals, each with the same pattern of zero and non-zero terms, with
only a sign alternation between successive intervals for m > 0. The
definition of L ensures that the number of intervals so defined will
be even and ≥ 2.

We note that since m1 > m0 by assumption, ~v0 has more intervals
than ~v1, by a factor of 2m1/2m0 .

We have the option of expressing ~v0 as the sum of 2m1/2m0 vec-
tors, constructed as follows

~v0(t) =
2m1−m0−1∑

q=0

~wm0,n0,q,L(t)

where

~wm0,n0,q,L(t) =

{
~vm0,n0,L(t) iff t mod 2m1 = q;
0 Otherwise.

(D.10)

The above has the effect of breaking ~v0 into a sum of offset vec-
tors, each having the same interval as ~v1. ~v0◦~v1 can now be expressed
as the sum of the inner products of ~v1 with each of the ~wm0,n0,q,L.
These inner products can be considered separately.

That is,

~v1 ◦ ~v0 = ~v1 ◦
2m1−m0−1∑

q=0

~wm0,n0,q,L (D.11)
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Since each of the ~wm0,n0,q,L has the same interval length as ~v1,
~v1 ◦ ~wm0,n0,q,L will have no non-zero terms except when both n0 = n1

mod 2m0 (i.e., there are overlapping non-zero terms between ~v0 and
~v1) and n1 = n0 + q (i.e., the right decomposition of ~v0).

Thus, proving orthogonality reduces to proving ~v1 ◦ ~wm0,n0,q,L for
n0 = n1 mod 2m0 and n1 = n0 + q, since all other inner products
have no common non-zero terms.

Note that ~v1 has an even number of non-zero terms, half of these
+1 and half −1.

~wm0,n0,q,L has exactly the same positions holding non-zero values
as ~v1, since both have the same first position for a non-zero term
and the same step size. However, while ~v1 has an equal number
of positive and negative entries, all entries in ~wm0,n0,q,L are of the
same sign. This is because the terms of ~wm0,n0,q,L are pulled from
positions of ~v0 that are an even number of intervals apart.

Therefore, ~v1 ◦ ~wm0,n0,q,L = 0, which completes the proof that the
vectors defined by Equation (6.2) are orthogonal.
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Appendix E

Derivation of the Broom
Theorems

This appendix proves the theorems asserted in Chapter 7, having to
do with translating between levels of Cairns space.

E.1 Sweeping Up

Let mv > mu ≥ 0 and define c ≡ 2mv−1/d2mu−1e.
By definition,

ψmu,n(x) =
∞∑
t=0

(−1)td2
1−mue xtd2

mu−1e+n

(td2mu−1e+ n)!
(E.1)

Let us perform a change of variables.

ψmu,n(x) =
∞∑
s=0

c−1∑
t=0

(−1)td2
1−mue xs2

mv−1+td2mu−1e+n

(s2mv−1 + td2mu−1e+ n)!
(E.2)

This creates “big steps” of size 2mv−1, and covers the terms
stepped over with “small steps” of size d2mu−1e.

As a short-hand, define

q ≡ s2mv−1 + td2mu−1e+ n
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Then, simply re-expressing the above, we have

ψmu,n(x) =
∞∑
s=0

c−1∑
t=0

(−1)td2
1−muex

q

q!
(E.3)

Now, switch the order of summation:

ψmu,n(x) =
c−1∑
t=0

(−1)td2
1−mue

∞∑
s=0

xq

q!
(E.4)

The summation

∞∑
s=0

xq

q!

could be expressed at level mv if it had a sign alternation of (−1)s.
We can introduce a sign alternation by introducing a factor inside
xq that cancels a sign alternation outside xq. This can be done as
follows.

xq =
(
i(22−mv)x

)q
i−q2

2−mv
(E.5)

Expanding the definition of q and rearranging, we have

i−q2
2−mv

=
(
i−2s

) (
i−(td2mu−1e+n)22−mv

)
(E.6)

= −1s
(
i−(td2mu−1e+n)22−mv

)
(E.7)

This gives us what we need. The first factor of the above gives us
a sign alternation for Equation (E.4). Since the second factor has
no s-dependency it can be moved to the outer (first) summation.
Therefore we have

ψmu,n(x) =
c−1∑
t=0

(−1)td2
1−mue

(
i−(td2mu−1e+n)22−mv

) ∞∑
s=0

(−1)s
(i(2

2−mv )x)q

q!
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(E.8)

Here td2mu−1e+ n plays the role of n at level mv, varying across
t. Putting it together, we have

ψmu,n(x) = (E.9)
c−1∑
t=0

i(−td2
mu−1e+n)/d2mv−2e(−1)td2

mu−1e

·ψ(mv ,td2mu−1e+n)(xi
(22−mv ))

which allows us to express ψmu,n(x) in terms of functions at level
mv, for mv > mu ≥ 0.

E.2 Sweeping Sideways

This section proves Equation (7.3), for expressing a function at level
m in terms of other functions at level m.

Let us examine a special case at m = 3 to understand the idea.
From the definition of a Taylor series,
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ψ3,0(x) (E.10)

= ψ3,0(a) (E.11)

+(x− a)ψ′3,0(a) (E.12)

+
(x− a)2

2!
ψ′′3,0(a) (E.13)

+
(x− a)3

3!
ψ′′′3,0(a) (E.14)

+ . . . (E.15)

= ψ3,0(a) (E.16)

+(x− a)(−ψ3,3(a)) (E.17)

+
(x− a)2

2!
(−ψ3,2(a)) (E.18)

+
(x− a)3

3!
(−ψ3,1(a)) (E.19)

+ . . . (E.20)

= ψ3,0(a)ψ3,0(x− a) (E.21)

−ψ3,3(a)ψ3,1(x− a) (E.22)

−ψ3,2(a)ψ3,2(x− a) (E.23)

−ψ3,1(a)ψ3,3(x− a) (E.24)

Notice that in the special case a = 0 we have ψ3,0(a) = 1,
ψ3,1(a) = ψ3,2(a) = ψ3,3(a) = 0 and the above reduces to a sim-
ple identity.

We now apply the same approach more generally.

ψm,n(x) =
∞∑
t=0

(x− a)t

t!
ψ(t)
m,n(a) (E.25)

=

d2m−1e−1∑
p=0

∞∑
t=0

(x− a)td2
m−1e+p

(td2m−1e+ p)!
ψ(td2m−1e+p)
m,n (a) (E.26)

Next, take advantage of the properties of derivatives of ψmn(x)
(see Chapter 4), specifically that ψ′m,n(x) = ψm,n−1(x) if n ≥ 1,
and ψ′m,0(x) = −ψm,d2m−1e−1(x). Consequently, in the first cycle of
derivatives in Equation (E.25) the sign will be positive for the first
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n differentiations, and negative thereafter. This pattern will reverse
in the next cycle, and alternate thereafter.

We also know that there are exacly d2m−1e − 1 functions at level
m, meaning that after d2m−1e − 1 differentiations we return to the
same function, with a sign change.

Combining this information, we have

ψm,n(x) =

d2m−1e−1∑
p=0

∞∑
t=0

(x− a)td2
m−1e+p

(td2m−1e+ p)!
(−1)t whole(n− p)ψm,(n−p)modd2m−1e−1(a)

Where, as in Chapter 7 we define whole(n−p) = 1 for (n−p) ≥ 0
and −1 otherwise.

Finally, we note that by the definition of ψmn(x) (see Chapter 4)
we can write

ψm,n(x) =

d2m−1e−1∑
p=0

whole(n− p)ψm,p(x− a)ψm,(n−p)modd2m−1e−1(a)
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Appendix F

Derivation of the Inner
Product

This appendix derives Equation (8.24) for the inner product at level
m.

Em,n(x) ◦ Em,n(x+ α) (F.1)

=

d2m−1e−1∑
n=0

Em,n(x)Em,n(x+ α) (F.2)

=
1

d2m−1e

d2m−1e−1∑
p=0

e2x cos(π(2p+1)21−m)eαi
−(2p+1)22−m

(F.3)

for the inner product at level m.
By definition, the left side of the above is equivalent to
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Em,n(x) ◦ Em,n(x+ α)

=

d2m−1e−1∑
n=0

Em,n(x)Em,n(x+ α)

=

d2m−1e−1∑
n=0

Em,n(x)Em,n(x+ α)

=

d2m−1e−1∑
n=0 1

d2m−1e

d2m−1e−1∑
pa=0

i−n(2pa+1)22−m

exi
(2pa+1)22−m


 1

d2m−1e

d2m−1e−1∑
pb=0

i−n(2pb+1)22−m

e(x+α)i(2pb+1)22−m


This summation is fairly horrendous. Cats have choked on less.

The first order of business is to reverse the order of summations, to
temporarily “freeze” the exponent. Otherwise, one is in for a very
long night.

Collecting the summations and the coefficients, and bringing the
“n” summation to the inside, we obtain

d2m−1e−1∑
pa=0

d2m−1e−1∑
pb=0

d2m−1e−1∑
n=0(

1

d2m−1e

)2

i−n(2pa+1)22−m

i−n(2pb+1)22−m

exi
(2pa+1)22−m

e(x+α)i(2pb+1)22−m

The coefficients depend on n, but the exponents do not. So we
can examine the inner summation considering the exponential factor
to be constant.

As is often true, it is useful to look at m = 3 explicitly to under-
stand the general pattern. If we look at the factor
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i−n(2p+1)/2 (F.4)

for m = 3, we can build the following table showing how it varies
with n and p.

p=0 p=1 p=2 p=3
n=0 1 1 1 1
n = 1 i−1/2 i−3/2 −i−1/2 −i−3/2

n = 2 i−1 −i−1 i−1 −i−1

n = 3 i−3/2 i−1/2 −i−3/2 −i−1/2

Since pa and pb are fixed for the inner summation, summing over
n amounts to multiplying some combination of two columns from
the above table together and adding down the rows of those two
columns.

It is notable that this procedure will yield zero for all combina-
tions of two columns except (p = 0, p = 3) and (p = 1, p = 2). These
happen to be the only combinations for which pa+pb = d2m−1e − 1.

The same pattern holds in the simpler case of m = 2, where the
corresponding matrix is

p = 0 p = 1
n = 0 1 1
n = 1 i−1 i−3

Does this pattern generalize for m ≥ 4?
Let us examine the summation of the coefficients by themselves.

d2m−1e−1∑
n=0

i−n(2pa+1)22−m

i−n(2pb+1)22−m

= (F.5)

d2m−1e−1∑
n=0

i−2n(pa+pb+1)22−m

(F.6)

For m ≥ 2 we can split the summation in two:
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d2m−1e−1∑
n=0

i−2n(pa+pb+1)22−m

(F.7)

=

d2m−2e−1∑
n=0

i−2n(pa+pb+1)22−m

+

d2m−1e−1∑
n=d2m−2e

i−2n(pa+pb+1)22−m

(F.8)

=

d2m−2e−1∑
n=0

(
i−2n(pa+pb+1)22−m

) (
1 + i−2(pa+pb+1)

)
(F.9)

The above summation will be zero whenever pa + pb + 1 is odd,
since the second factor will be zero. If pa + pb + 1 is even then the
second factor reduces to 2.

If we assume pa+pb+1 is even then for m ≥ 3 we can again split
the summation in two, precisely as above. We obtain

d2m−3e−1∑
n=0

2
(
i−2n(pa+pb+1)22−m

) (
1 + i−2(pa+pb+1)

)
We saw at the previous step that pa + pb + 1 must be even for

non-zero cases. This step tells us that only even terms which are
divisible by four produce a non-zero sum.

We can repeat this process recursively as many times as 2m−1

can be divided into two equal parts, with at least one member each;
that is, m − 1 times. After m − 1 steps, we know that pa + pb + 1
must be a multiple of 2m−1.

This provides the generalization of the m = 2 and m = 3 results
we saw from the above tables. The summation is now less horren-
dous. From here, it requires only a cigar and a shot of Pusser’s to
complete the derivation of the inner product formula.

Because we know that only cases where pa + pb + 1 = 2m−1 will
have a non-zero sum, we can remove all other cases from the sum-
mation without changing the result. Let us therefore define

pb = 2m−1 − pa − 1 (F.10)

Which gives us
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(2pb + 1)22−m = (2(2m−1 − pa − 1) + 1)22−m (F.11)

= (2m − 2pa − 1)22−m (F.12)

= 4− (2pa + 1)22−m (F.13)

So

i(2pb+1)22−m

= i4−(2pa+1)22−m

(F.14)

= i−(2pa+1)22−m

(F.15)

To summarize, we now have the following simplifications available

1. The summation over n, and the imaginary coefficients, can be
replaced by the constraint pa + pb + 1 = 2m−1 and a factor of
2m−1.

2. Since there is only one allowable value of pb for a given value
of pa, we can eliminate pb from the exponent and drop the
summation over pb.

This gives us

d2m−1e−1∑
n=0

Em,n(x)Em,n(x+ α)

=

d2m−1e−1∑
pa=0

d2m−1e−1∑
pb=0

d2m−1e−1∑
n=0(

1

d2m−1e

)2

i−n(2pa+1)22−m

i−n(2pb+1)22−m

d2m−1eexi(2pa+1)22−m

e(x+α)i(2pb+1)22−m

=

d2m−1e−1∑
pa=0

(
1

d2m−1e

)2

d2m−1eexi(2pa+1)22−m

e(x+α)i−(2pa+1)22−m

Cancelling and regrouping, we have
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d2m−1e−1∑
pa=0

1

d2m−1e
e
x

“
i(2pa+1)22−m

+i−(2pa+1)22−m
”
eαi

−(2pa+1)22−m

Finally, we can rewrite the imaginary sum as follows. In general,

ia + i−a = eiπa/2 + e−iπa/2

= (cos(πa/2) + i sin(πa/2)) (cos(πa/2)− i sin(πa/2))

= 2cos(πa/2)

Using this identity for a = (2p + 1)22−m and substituting p for
pa, we have

1

d2m−1e

d2m−1e−1∑
p=0

e2x cos(π(2p+1)21−m)eαi
−(2p+1)22−m

as claimed.
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Appendix G

The Cairns Functions For
m ≤ 4

This appendix details ψmn(x) and Emn(x) for the levels m ≤ 4.
Recall that

ψmn(x) =
∞∑
t=0

(−1)td2
1−me xtd2

m−1e+n

(td2m−1e+ n)!
(G.1)

Em,0(x) =
1

d2m−1e

d2m−1e−1∑
p=0

exi
(2p+1)22−m

(G.2)

(G.3)

and

exi
(22−m)

=

d2m−1e−1∑
n=0

in22−m

(ψmn(x) = Emn(x)) (G.4)

G.1 m ≤ 0

For m = 0,
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ψ0,0(x) =
∞∑
t=0

xt

t!

and

E0, 0(x) = ex

G.2 m = 1

For m = 1,

ψ1,0(x) =
∞∑
t=0

−1t
xt

t!

and

E1,0(x) = e−x

G.3 m = 2

For m = 2,

ψ2,0(x) =
∞∑
t=0

−1t
x2t

(2t)!

ψ2,1(x) =
∞∑
t=0

−1t
x2t+1

(2t+ 1)!

and

E2,0(x) = cos(x) =
1

2

(
ex + e−x

)
E2,1(x) = sin(x) =

1

2i

(
ex − e−x

)
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G.4 m = 3

For m = 3,

ψ3,0(x) =
∞∑
t=0

−1t
x4t

(4t)!

ψ3,1(x) =
∞∑
t=0

−1t
x4t+1

(4t+ 1)!

ψ3,2(x) =
∞∑
t=0

−1t
x4t+2

(4t+ 2)!

ψ3,3(x) =
∞∑
t=0

−1t
x4t+3

(4t+ 3)!

The Emn(x)values can be found from the below table, generated

by integrating 4E3,0 = exi
1/2

+ exi
3/2

+ exi
5/2

+ exi
7/2

exi
1/2

exi
3/2

exi
5/2

exi
7/2

4E3,0(x) 1 1 1 1
4E3,1(x) i−1/2 i−3/2 −i−1/2 −i−3/2

4E3,2(x) i−1 −i−1 i−1 −i−1

4E3,3(x) i−3/2 i−1/2 −i−3/2 −i−1/2

Alternatively, by differentiation of Equation (5.9) we have

E3,0 = cosh(
x√
2
) cos(

x√
2
)

E3,1 =
1√
2

(
cosh(

x√
2
) sin(

x√
2
) + sinh(

x√
2
) cos(

x√
2
)

)
E3,2 = sinh(

x√
2
) sin(

x√
2
)

E3,3 =
1√
2

(
cosh(

x√
2
) sin(

x√
2
)− sinh(

x√
2
) cos(

x√
2
)

)
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G.5 m = 4

For m = 4,

ψ4,0(x) =
∞∑
t=0

−1t
x8t

(8t)!

ψ4,1(x) =
∞∑
t=0

−1t
x8t+1

(8t+ 1)!

ψ4,2(x) =
∞∑
t=0

−1t
x8t+2

(8t+ 2)!

ψ4,3(x) =
∞∑
t=0

−1t
x8t+3

(8t+ 3)!

ψ4,4(x) =
∞∑
t=0

−1t
x8t+4

(8t+ 4)!

ψ4,5(x) =
∞∑
t=0

−1t
x8t+5

(8t+ 5)!

ψ4,6(x) =
∞∑
t=0

−1t
x8t+6

(8t+ 6)!

ψ4,7(x) =
∞∑
t=0

−1t
x8t+7

(8t+ 7)!

and for Emn(x)we have

exi
1/4

exi
3/4

exi
5/4

exi
7/4

exi
9/4

exi
11/4

exi
13/4

exi
15/4

8E4,0(x) 1 1 1 1 1 1 1 1
8E4,1(x) i−1/4 i−3/4 i−5/4 i−7/4 i−9/4 i−11/4 i−13/4 i−15/4

8E4,2(x) i−1/2 i−3/2 i−5/2 i−7/2 i−1/2 i−3/2 i−5/2 i−7/2

8E4,3(x) i−3/4 i−9/4 i−15/4 i−5/4 i−11/4 i−1/4 i−7/4 i−13/4

8E4,4(x) i−1 i−3 i−1 i−3 i−1 i−3 i−1 i−3

8E4,5(x) i−5/4 i−15/4 i−9/4 i−3/4 i−13/4 i−7/4 i−1/4 i−11/4

8E4,6(x) i−3/2 i−1/2 i−7/2 i−5/2 i−3/2 i−1/2 i−7/2 i−5/2

8E4,7(x) i−7/4 i−5/4 i−3/4 i−1/4 i−15/4 i−13/4 i−11/4 i−9/4
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Alternatively, we can differentiate Equation (5.9). For concise-
ness, we make use of the abbreviations

α ≡ cos(π/8) = sin(3π/8) (G.5)

β ≡ sin(π/8) = cos(3π/8) (G.6)

c ≡ cos (G.7)

s ≡ sin (G.8)

ch ≡ cosh (G.9)

sh ≡ sinh (G.10)

The following identities are also useful for simplifying expres-
sions1

α2 + β2 = 1 (G.11)

α2 − β2 =
1√
2

(G.12)

2αβ =
1√
2

(G.13)

(α+ β)/
√

2 = α (G.14)

(α− β)/
√

2 = β (G.15)

Using the above, we have

1These can be derived from the fact that α = (1 +
√

2)/

„√
2

q√
2(1 +

√
2)

«
and

β = 1/

„√
2

q√
2(1 +

√
2)

«
, as can seen by applying the double angle formula starting with

cos(π/4) = sin(π/4) = 1/
√

2.
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E4,0 = ch(αx)c(βx) + ch(βx)c(αx)

E4,1 = βch(αx)s(βx) + αsh(αx)c(βx) + αch(βx)s(αx) + βsh(βx)c(αx)

E4,2 =
1√
2

(sh(αx)s(βx) + ch(αx)c(βx) + sh(βx)s(αx)− ch(βx)c(αx))

E4,3 = αch(αx)s(βx) + βsh(αx)c(βx)− βch(βx)s(αx)− αsh(βx)c(αx)

E4,4 = sh(αx)s(βx)− sh(βx)s(αx)

E4,5 = −βsh(αx)c(βx) + αch(αx)s(βx) + αsh(βx)c(αx)− βch(βx)s(αx)

E4,6 =
1√
2

(−ch(αx)c(βx) + sh(αx)s(βx) + ch(βx)c(αx) + sh(βx)s(αx))

E4,7 = −αsh(αx)c(βx) + βch(αx)s(βx)− βsh(βx)c(αx) + αch(βx)s(αx)

Notice that for even n, E4,n(x) consists of only cosh cos or sinh sin
terms, whereas for odd n E4,n(x) consists of only cosh sin or sinh cos
terms. This is consistent with the requirement that E4,n(x) must be
symmetric for even n, and anti-symmetric for odd n.2

As an exercise, it is possible to use the broom theorems and a
modest amount of trickery to show that E4,0(x) = 0 is equivalent to

−1 = tanh(αx/
√

2)tanh(βx/
√

2)tan(αx/
√

2)tan(βx/
√

2)

An approximate solution is x = 3.76, as is evident from taking a
two-term approximation of ψ4,0(x) = 0.

2The question may arise as to whether it is possible to factor

E4,0 = ch(αx)c(βx) + ch(βx)c(αx)

into a single term, of the form (a+ b)(c+ d)(e+ f).
I believe the answer to be “no”, on symmetry grounds. By inspection,

ψ4,0(x) = 1−
x8

8!
+
x16

16!
− . . .

is invariant under the 7 distinct transforms x→ i
1
2 x, x→ ix, x→ i3/2x, x→ i2x, x→ i5/2x,

x→ i3x, x→ i7/2x
Since E4,0(x) = ψ4,0(x), it follows that E4,0(x) must have the same invariants. For E3,0(x),

the corresponding 3 transforms essentially map a given element into each of the 3 other
elements of E3,0(x) = cosh(x) cos(x) = (ex +e−x)(eix +e−ix)/4. But this would not work for

E4,0(x)
?
= (a+b)(c+d)(e+f), since there are only 5 other elements available for 7 transforms.
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